Two Adjacent and Similar TetR Family Transcriptional Regulator Genes, SAV577 and SAV576, Co-Regulate Avermectin Production in Streptomyces avermitilis
نویسندگان
چکیده
Streptomyces avermitilis is an important bacterial species used for industrial production of avermectins, a family of broad-spectrum anthelmintic agents. We previously identified the protein SAV576, a TetR family transcriptional regulator (TFR), as a downregulator of avermectin biosynthesis that acts by controlling transcription of its major target gene SAV575 (which encodes cytochrome P450/NADPH-ferrihemoprotein reductase) and ave genes. SAV577, another TFR gene, encodes a SAV577 protein that displays high amino acid homology with SAV576. In this study, we examined the effect of SAV577 on avermectin production and the relationships between SAV576 and SAV577. SAV577 downregulated avermectin biosynthesis indirectly, similarly to SAV576. SAV576 and SAV577 both directly repressed SAV575 transcription, and reciprocally repressed each other's expression. SAV575 transcription levels in various S. avermitilis strains were correlated with avermectin production levels. DNase I footprinting and electrophoretic mobility shift assays indicated that SAV576 and SAV577 compete for the same binding regions, and that DNA-binding affinity of SAV576 is much stronger than that of SAV577. GST pull-down assays revealed no direct interaction between the two proteins. Taken together, these findings suggest that SAV577 regulates avermectin production in S. avermitilis by a mechanism similar to that of SAV576, and that the role of SAV576 is dominant over that of SAV577. This is the first report of two adjacent and similar TFR genes that co-regulate antibiotic production in Streptomyces.
منابع مشابه
A Novel TetR Family Transcriptional Regulator, SAV576, Negatively Controls Avermectin Biosynthesis in Streptomyces avermitilis
Avermectins produced by Streptomyces avermitilis are potent anti-parasitic agents that are useful in animal health care, agriculture, and the treatment of human infections. In a search for novel regulators that affect avermectin biosynthesis, comparative transcriptome analysis was performed between wild-type strain ATCC31267 and avermectin overproducing strain 76-02-e, revealing some differenti...
متن کاملFunctional expression of SAV3818, a putative TetR-family transcriptional regulatory gene from Streptomyces avermitilis, stimulates antibiotic production in Streptomyces species.
Avermectin and its analogs are major commercial antiparasitic agents in the fields of animal health, agriculture, and human infections. Previously, comparative transcriptome analysis between the low-producer S. avermitilis ATCC31267 and the high-producer S. avermitilis ATCC31780 using a S. avermitilis whole genome chip revealed that 50 genes were overexpressed at least two-fold higher in S. ave...
متن کاملCharacterization of SAV7471, a TetR-family transcriptional regulator involved in the regulation of coenzyme A metabolism in Streptomyces avermitilis.
The role of a tetR transcriptional regulatory gene (SAV7471) in avermectin production in the Gram-positive soil bacterium Streptomyces avermitilis was investigated by gene deletion, complementation, and overexpression experiments. Gene deletion of the SAV7471 open reading frame resulted in avermectin overproduction. The deletion also resulted in overexpression of SAV7472-SAV7473 transcripts, wh...
متن کاملAvaR1, a Butenolide-Type Autoregulator Receptor in Streptomyces avermitilis, Directly Represses Avenolide and Avermectin Biosynthesis and Multiple Physiological Responses
Avermectins are commercially important anthelmintic antibiotics produced by Streptomyces avermitilis. The homologous TetR-family transcriptional regulators AvaR1 and AvaR2 in this species were identified previously as receptors of avenolide, a novel butenolide-type autoregulator signal required for triggering avermectin biosynthesis. AvaR2 was found to be an important pleiotropic regulator in r...
متن کاملSAV742, a Novel AraC-Family Regulator from Streptomyces avermitilis, Controls Avermectin Biosynthesis, Cell Growth and Development
Avermectins are useful anthelmintic antibiotics produced by Streptomyces avermitilis. We demonstrated that a novel AraC-family transcriptional regulator in this species, SAV742, is a global regulator that negatively controls avermectin biosynthesis and cell growth, but positively controls morphological differentiation. Deletion of its gene, sav_742, increased avermectin production and dry cell ...
متن کامل